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International Lectures 

 
Lei Wang (Chinese Academy of Sciences) 
"Generative models for physicists" 
These lectures will cover: 
1. Motivation and a dictionary between generative models and statistical physics, 
2. Boltzmann machines, autoregressive models, variational autoencoders, normalizing flows, 
diffusion models, and more, from a physicist's perspective, 
3. Applications of generative models to many-body problems. 
It ends with a remark that the Universe is a generative model. A model that generates 
everything from THE action. 
 
Sebastian Goldt (SISSA) 
"Analytical approaches to the learning dynamics of two-layer neural networks" 
This course will discuss the dynamics of stochastic gradient descent with neural networks. 
Starting from classical work by D. Saad and S. Solla [PRL, PRE '95], we will use tools from 
statistical physics to derive an analytical description of the learning dynamics of two-layer 
neural networks trained on a simple data model. This framework will allow us to discuss a 
couple of recent developments: (1) the connection to mean-field approaches for describing 
the dynamics of wide networks; (2) the extension to more complex models of data, via the 
Gaussian equivalence principle and beyond; and (3) more fine-grained approaches to early 
learning dynamics (one step of SGD, "escaping mediocrity"). Throughout the lectures, we 
will illustrate our results on popular examples such as the teacher-student setup or Gaussian 
mixture classification, and try to unveil common motifs across the different approaches. 
 
Sven Krippendorf (LMU Munich) 
"Machine learning as a method in mathematical physics" 
In these lectures I will discuss how machine learning methods can be adapted to answer 
questions in mathematical physics. Concretely, I will discuss how machine learning methods 
can be used to detect symmetries. I plan to introduce the relevant ML techniques alongside it 



such that there is no pre-requisite of knowing ML techniques. Finally, I also plan to give an 
overview on where we have successfully applied this framework as of now in more specialised 
physics questions, highlighting which technological adaptations were crucial in the process. 
 
 

International Conference 

 
Gary Shiu (U. Wisconsin) 
"Learning from Topology: Cosmological Parameter Inference from the Large-scale Structure" 
A challenge common to different scientific areas is to effectively infer from big, complex, 
higher-dimensional datasets the underlying theory. Persistent homology is a tool in 
computational topology developed for recognizing the ``shape” of data. Such topological 
measures have the advantages that 1) they are stable against experimental noise, 2) they probe 
multiscale, non-local characteristics of a dataset, 3) they provide interpretable statistics that 
encode information of all higher-point correlations. In this talk, I will focus on the applications 
of persistent homology to cosmological inference. Iʼll show how the constraints on primordial 
non-Gaussianities and cosmological parameters derived from persistent homologies are 
generally tighter than those from the redshift-space power spectrum and bispectrum 
combined. Iʼll also present a recent work in which we proposed a neural network model to 
map persistence images to cosmological parameters. Through a parameter recovery test, we 
demonstrate that our model makes accurate and precise estimates, considerably 
outperforming conventional Bayesian inference approaches. This provides a proof-of-concept 
that topological data analysis (via persistent homology) and machine learning can be 
combined for cosmological inference. 
 
Jesse Thaler (MIT / IAIFI) 
"The Hidden Geometry of Particle Collisions" 
Since the 1960s, particle physicists have developed a variety of data analysis techniques for 
the goal of comparing experimental measurements to theoretical predictions.  Despite their 
numerous successes, these techniques can seem esoteric and ad hoc, even to practitioners in 
the field.  In this talk, I explain how many particle physics analysis tools have a natural 
geometric interpretation in an emergent "space" of collider events induced by the Wasserstein 
metric.  This in turn suggests new machine learning strategies to interpret point cloud data 
sets from collider physics and beyond. 
 



James Halverson (Northeastern U / IAIFI) 
"Rigorous Applications of Machine Learning: from Particles to the Poincare Conjecture" 
Though powerful, machine learning techniques are often stochastic, error-prone, and 
blackbox. How, then, should we apply them in fields like theoretical physics and pure 
mathematics that place a high value on rigor and understanding? In this talk I will demonstrate 
how applied ML may be made rigorous by conjecture generation and solution verification, 
through applications in knot theory related to the Poincare conjecture. I'll also show that rigor 
may arise by using ML theory, with new approaches to Riemannian metric flows and quantum 
field theory. 
 
Long-Gang Pang (Frankfurt U) 
"Deep Learning for High Energy Nuclear Physics" 
High energy nuclear physics has long been captivated by the mysteries of the universe, 
particularly the formation and evolution of hot and dense quark-gluon plasma (QGP) in the 
early universe. While QGP can be recreated in the laboratory through relativistic heavy ion 
collisions, capturing its behavior directly has proven challenging due to its short lifetime. 
Instead, scientists have turned to detecting the four-momentum of final state hadrons, which 
are produced after the QGP freezes out and form a point cloud in the momentum space that 
contains valuable information about QGP properties and initial nuclear and partonic 
structure. In recent years, deep learning techniques have emerged as a powerful tool for 
solving inverse problems and variational problems in high energy nuclear physics. By 
leveraging optimization, auto-differentiation, and advanced algorithms, these models can 
learn complex relationships between input data and desired outputs, paving new avenues to 
studying QGP properties and initial conditions. This breakthrough has significant 
implications for advancing our understanding of fundamental physics and developing new 
technologies for exploring the universe. 
 
Haiping Huang (Sun Yat-sen U) 
"Geometric computation in deep neural networks" 
We propose a mode decomposition learning that can interpret the weight matrices as a 
hierarchy of latent modes. These modes are akin to patterns in physics studies of memory 
networks, but the least number of modes increases only logarithmically with the network 
width and even becomes a constant when the width grows further. The mode decomposition 
learning not only saves a significant large amount of training costs but also explains the 
network performance with the leading modes, displaying a striking piecewise power-law 
behavior. The modes specify a progressively compact latent space across the network 



hierarchy, making a more disentangled subspace compared to standard training. Our mode 
decomposition learning is also studied in an analytic online learning setting, which reveals 
multiple stages of learning dynamics with a continuous specialization of hidden nodes. 
Extension of this framework to geometry aware computation in various architectures of 
different nature  is also discussed.  
REFERENCES 
1.        C. Li and H. Huang, Phys. Rev. Research 5, L022011 (2023) 
2.        Z. Lin and H. Huang, unpublished (2023) 
3.        Y. Wang, M. Xie, W. Huang, and H. Huang, unpublished (2023) 
 
Masashi Sugiyama (RIKEN AIP) 
"Towards Trustworthy Machine Learning from Weakly Supervised, Noisy, and Biased Data" 
When training a machine learning system, the training data suffers from a variety of 
uncertainties such as insufficient information, label noise, and bias. In this talk, I will give an 
overview of our recent research on reliable machine learning, including weakly supervised 
classification, noisy label classification, and transfer learning. Finally, I would like to discuss 
with physicists how basic machine learning technology can be further developed. 
 
Phiala Shanahan (MIT) 
" Generative models for first-principles calculations of the structure of matter " 
Novel approaches to machine learning are transforming the landscape of theoretical physics. 
In this context, I will discuss opportunities for generative models to accelerate first-principles 
theory calculations in particle and nuclear physics. Particular challenges to this paradigm 
include incorporating complex symmetries into model architectures, scaling models to the 
large number of degrees of freedom of state-of-the-art numerical studies, and designing 
machine-learning-accelerated algorithms that are provably exact. I will illustrate the potential 
of this approach by describing first studies that demonstrate that ML-accelerated sampling 
can be orders of magnitude more efficient than traditional algorithms, such as 
Hamiltonian/hybrid Monte Carlo, in the context of lattice quantum field theory calculations 
for nuclear physics. 
 
Eun-Ah Kim (Cornell U) 
"Data-centric learning of Quantum Many-body States with Classical Machines" 
Decades of efforts by the quantum matter research community drove a "data revolution." 
Modern experimental modalities produce high-dimensional data in large volumes. 
Unprecedented control and new facilities imply new dimension and new knobs, such as time-



resolved probing or scanning probing. Moreover, through recent advances in quantum 
simulators, quantum many-body dynamics can be simulated in various quantum computing 
platforms. Such many-body states are probed through projective measurements resulting in 
bit-strings that reside in exponentially large dimensional space. I will discuss how to learn the 
nature of quantum many-body states encoded in the data of the new era through data-centric 
approaches using machine learning. Ultimately, such "learning" should aim to accelerate 
discoveries and gain new insights. A synergy between data science and quantum matter 
physics is essential for this. I will present cases of fruitful collaborations that led to new 
insights and started to shape an approach to data sets of the new era. 
 
Sven Krippendorf (LMU Munich) 
"Physics to understand neural network dynamics" 
Large neural networks (e.g. large language models) require a large amount of energy to train 
while our brain is much more energy efficient. To optimise our design of neural networks, I 
will discuss how physics models can play a significant role in quantifying the dynamical 
behaviour of neural networks. This includes a duality between the physical system of a 
dynamical scalar field in an expanding Universe and neural networks trained via gradient 
descent. In the second part I will introduce collective variables to describe neural network 
dynamics and discuss their behaviour throughout training. I will comment on applications of 
this framework to optimise our design of neural network training. 
 
Sebastian Goldt (SISSA) 
"The Gaussian world is not enough -- how training data shapes neural representations" 
What do neural networks learn from their data ? We discuss this question in two learning 
paradigms: supervised classification with feed-forward networks, and masked language 
modelling with transformers. First, we give analytical and experimental evidence for a 
“distributional simplicity bias”, whereby neural networks learn increasingly complex 
distributions of their inputs. We then show that neural networks learn from the higher-order 
cumulants (HOCs) more efficiently than lazy methods, and show how HOCs shape the learnt 
features. We finally characterise the distributions that are learnt by single- and multi-layer 
transformers, and discuss implications for designing efficient transformers. 
 
Matthias Troyer (Microsoft) 
"Accelerating scientific discovery with Azure Quantum Elements" 
Chemical and materials science impacts 96% of manufactured goods and 100% of humanity. 
Advancements in this space will enable scientists to help solve many of societyʼs most pressing 



problems and unlock unprecedented growth. However, to date, technology has not been able 
to deliver the scale, speed and accuracy required to rapidly accelerate progress. That is all 
about to change. I will explore how advancements in cloud technologies, artificial intelligence, 
high performance computing, and quantum computing are accelerating progress for scientists 
around the world. As part of this, I will also share breakthroughs in molecular simulation in 
the cloud that are enabling new applications for computational chemists and materials 
scientists, advances in quantum computing, and how industrial scientists are getting started 
using these methods today.   
 
Gert Aarts (U Swansea) 
"From lattice field theory to machine learning and back" 
Recently, machine learning has become a popular tool to use in fundamental science, 
including lattice field theory. Here I will report on some recent ideas, including the Inverse 
Renormalisation Group and quantum-field theoretical machine learning. The latter combines 
insights of lattice field theory and machine learning to provide a fresh perspective on 
(hopefully) both. 
 
David Shih (Rutgers U) 
"Machine Learning for Fundamental Physics from the Smallest to the Largest Scales" 
What new particles and interactions exist beyond the Standard Model? What is the nature of 
dark matter? What is the origin of the universe? Essential questions of fundamental physics 
such as these are being confronted with an unprecedented amount of high quality data from 
the LHC and astronomical surveys. Powerful and cross-cutting machine learning techniques 
such as generative modeling, density estimation and anomaly detection are increasingly being 
applied to these datasets, vastly enhancing their discovery potential. In my talk, I will showcase 
some highlights from this ongoing machine learning revolution that span the range from the 
smallest scales (LHC data) to the largest scales (astronomical data). I will describe how new 
techniques developed for model-independent new physics searches and fast simulation at the 
LHC can also be applied to data from the Gaia space telescope to map out the Milky Way dark 
matter density, discover new stellar streams, and upsample galaxy simulations. 
 
Lei Wang (Chinese Academy of Sciences) 
"A deep variational free energy approach to dense hydrogen" 
Dense hydrogen, the most abundant matter in the visible universe, exhibits a range of 
fascinating physical phenomena such as metallization and high-temperature 
superconductivity, with significant implications for planetary physics and nuclear fusion 



research. Accurate prediction of the equations of state and phase diagram of dense hydrogen 
has long been a challenge for computational methods. In this talk, we present a deep 
generative model-based variational free energy approach to tackle the problem of dense 
hydrogen, overcoming the limitations of traditional computational methods. Our approach 
employs a normalizing flow network to model the proton Boltzmann distribution and a 
fermionic neural network to model the electron wavefunction at given proton positions. The 
joint optimization of these two neural networks leads to a comparable variational free energy 
to previous coupled electron-ion Monte Carlo calculations. Our results suggest that hydrogen 
in planetary conditions is even denser than previously estimated using Monte Carlo and ab 
initio molecular dynamics methods. Having reliable computation of the equation of state for 
dense hydrogen, and in particular, direct access to its entropy and free energy, opens new 
opportunities in planetary modeling and high-pressure physics research. 
 
 
 
Machine Learning Physics Project talks 
 
Project A01 
Akio Tomiya 
“Machine learning for lattice field theory” 
The A01 team has innovatively combined computational physics and machine learning to 
address challenges in lattice QCD. We've introduced a Self-learning Monte Carlo with an 
equivariant Transformer, enhancing simulations of complex physical systems like the double 
exchange model. Additionally, our gauge covariant neural networks, tailored for lattice QCD, 
reinterpret traditional smearing as extended residual neural networks. Lastly, we've optimized 
the path for gauge theories, using gauge-covariant networks to tackle the sign problem in 
lattice field theories. Collectively, our work showcases the transformative potential of machine 
learning in advancing lattice QCD simulations. 
 
Project A02 
Ahmed Hammad 
“Advanced machine learning to enhance the particle collider search” 
The LHC search for new physics suffers from large background contamination and the small 
cross section for the new physics. To alleviate these problems we are obligated to utilize deep 
and advanced machine learning models to single out the new physics signatures. Although 
there are many proposed ML for the LHC analysis we focus on the contrastive learning models. 



Contrastive learning is mainly based on learning the similarity between pairs of input from 
the same class and dissimilarity between the pairs from different classes by mapping them in 
different regions in the latent space of the model. The contrastive learning, specifically 
Siamese network, shows a large classification performance over the other state of art ML 
models. Moreover, we present a multi-scale transformer model with cross attention that is 
able to analyze events with different momentum scales, features, etc. Finally, we construe our 
results by using interpretability methods like central kernel alignment (CKA) and Grad-Cam. 
 
Project A03 
Eiji Saitoh 
“Deciphering quantum fingerprints in electric conductance”  
When the electric conductance of a nano-sized metal is measured at low temperatures, it often 
exhibits complex but reproducible patterns as a function of external magnetic fields called 
quantum fingerprints in electric conductance. Such complex patterns are due to quantum‒
mechanical interference of conduction electrons; when thermal disturbance is feeble and 
coherence of the electrons extends all over the sample, the quantum interference pattern 
reflects microscopic structures, such as crystalline defects and the shape of the sample, giving 
rise to complicated interference. Although the interference pattern carries such microscopic 
information, it looks so random that it has not been analyzed. Here we show that machine 
learning allows us to decipher quantum fingerprints [1]; fingerprint patterns in magneto-
conductance are shown to be transcribed into spatial images of electron wave function 
intensities (WIs) in a sample by using generative machine learning. The output WIs reveal 
quantum interference states of conduction electrons, as well as sample shapes. The present 
result augments the human ability to identify quantum states, and it should allow microscopy 
of quantum nanostructures in materials by making use of quantum fingerprints. 
[1] S. Daimon, K. Tsunekawa, S. Kawakami, T. Kikkawa, R. Ramos, K. Oyanagi, T. Ohtsuki 
& E. Saitoh, Nature Com. 13, 3160, (2022). 
 
Project A04 
Koji Hashimoto 
“Quantum, spacetime and machine learning” 
The group A04 is searching for possible relations among quantum concepts, spacetimes and 
machine learning. Specifically we elaborate on two situations, (1) neural networks allows a 
spacetime interpretation (2) neural network output provides geometric information. We 
review some of the research conducted under these two directions.   
 



Project B01 
Ryo Karakida 
“Understanding deep learning algorithms through learning regimes” 
There are many global minima in overparameterized neural networks, and the selection of a 
minimum depends on the algorithm's configuration. Understanding systematically which 
minimum (state or "regime") can be achieved after learning would provide valuable insights 
for algorithm development. Here, we introduce two attempts. One is an analysis of the 
gradient regularization algorithm in a solvable diagonal linear network. It reveals a preferable 
implicit bias caused by the finite step size towards a sparse solution referred to as the rich 
regime. The other is the second-order optimization in the infinite width limit of deep nets. 
We identify the maximum update parameterization (muP) in widely-used second-order 
optimization methods, revealing desirable hyperparameters for the feature regime that 
realizes feature learning beyond the lazy regime in infinite width. It enables us to choose the 
hyperparameters that work across different widths. 
 
Project B02 
Takashi Takahashi 
“Mean-field analysis of self-training with pseudo-labels” 
Self-training (ST) is a widely used approach in semi-supervised learning. ST assigns pseudo-
labels to unlabeled data points based on the model's own predictions, and then updates the 
model by fitting it to the pseudo-labels. This updating step is iterated several times. 
Unfortunately, the theoretical foundations for designing an effective update scheme in ST 
remain unclear, although the generalization performance of the final model depends on the 
details of the update scheme used at each stage, such as the size of the unlabeled data and the 
method for constructing the pseudo labels. 
To deepen our understanding of ST, we provide a mean-field theory of ST in a solvable setup. 
Specifically, we consider the ST of the linear model that minimizes the ridge-regularized 
cross-entropy loss when the data are generated from a two-component Gaussian mixture. 
Leveraging this mean-field theory, we investigate how the generalization performance of the 
model obtained through ST is influenced by the details of the update methods at each step. 
Our findings demonstrate that ST can achieve performance equivalent to supervised learning 
using the true labels in the limit of a large number of updates if the update size per iteration 
could be infinitesimal under vanishing regularization. Conversely, in scenarios where the 
update size per iteration might be large under vanishing regularization, our results reveal that 
ST may lead to a classification boundary incapable of correct classification. 
 



Project B03 
Syo Kamata 
“Reliability test for uncertainty quantification in the machine-learning inference from the 
neutron-star data to the equation of state” 
Understanding QCD in the regime of finite density is a vital challenge in the modern nuclear 
physics, and neutron stars by far provide the most reliable and robust constraints on the dense 
matter EoS. In this talk, we introduce our progress based on a neural network to estimate the 
EoS from experimentally observed MR probability distributions. 


